Sunday 5 November 2017

13. विद्युत धारा का चुम्बकीय प्रभाव


13. विद्युत धारा का चुम्बकीय प्रभाव



चुम्बक के ध्रुव (The poles of Magnet):
1. उत्तर दिशा की ओर संकेत करने वाले सिरे को उत्तरोमुखी ध्रुव अथवा उत्तर ध्रुव कहते हैं।
2. दूसरा सिरा जो दक्षिण दिशा की ओर संकेत करता है उसे दक्षिणोमुखी ध्रुव अथवा दक्षिण ध्रुव कहते हैं। 
चुम्बकीय क्षेत्र (Magnetic Field): एक मैगनेट के चारों के क्षेत्र जिसमें चुम्बक का पता लगाया जा सकता है, चुम्बकीय क्षेत्र कहलाता है |
चुम्बकीय क्षेत्र रेखाएँ (Magnetic Field Lines): चुम्बक के चारों ओर बहुत सी रेखाएँ बनती हैं, जो चुम्बक के उतारी ध्रुव से निकल कर दक्षिणी ध्रुव में प्रवेश करती प्रतीत होती हैं, इन रेखाओं को चुम्बकीय क्षेत्र रेखाएँ कहते हैं |
चुम्बकीय क्षेत्र रेखाओं की विशेषताएँ (Features of Magnetic Field Lines): 
(i) चुम्बकीय क्षेत्र रेखाएँ उत्तरी ध्रुव से निकलकर दक्षिणी ध्रुव में समाहित हो जाती है |
(ii) चुम्बक के अंदर, चुम्बकीय क्षेत्र की दिशा इसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होता है |
(iii) चुम्बकीय क्षेत्र रेखाएँ बंद वक्र होती हैं |
(iv) जहाँ चुम्बकीय क्षेत्र रेखाए घनी होती हैं वहाँ चुम्बकीय क्षेत्र मजबूत होता है |
(v) दो चुम्बकीय क्षेत्र रेखाएँ कभी एक दुसरे को प्रतिच्छेद नहीं करती हैं |

धारावाही चालक के चारो ओर चुम्बकीय क्षेत्र :
(Magnetic Fields around the current carrying conductor: 
(i) एक धातु चालक से होकर गुजरने वाली विद्युत धारा इसके चारों ओर चुम्बकीय क्षेत्र बनाता है |
(ii) जब एक धारावाही चालक को दिक्सूचक सुई के पास और उसके सुई के समांतर ले जाते है तो  विद्युत धारा की बहाव की दिशा दिकसुचक के विचलन की दिशा को उत्क्रमित कर देता है जो कि विपरीत दिशा में होता है |
(iii) यदि धारा में वृद्धि की जाती है तो दिक्सूचक के विचलन में भी वृद्धि होती हैं |
(iv) जैसे जैसे चालन में धारा की वृद्धि होती है वैसे वैसे दिए गए बिंदु पर उत्पन्न चुम्बकीय क्षेत्र का परिमाण भी बढ़ता है |
(v) जब हम एक कंपास (दिक्सूचक) को धारावाही चालक से दूर ले जाते हैं तो सुई का विचलन कम हो जाता है |
(vi) तार में प्रवाहित विद्युत धारा के परिमाण में वृद्धि होती है तो किसी दिए गए बिंदु पर उत्पन्न चुंबकीय क्षेत्र के परिमाण में भी वृद्धि हो जाती है।
(vii) किसी चालक से प्रवाहित की गई विद्युत धरा के कारण उत्पन्न चुंबकीय क्षेत्र चालक से दूर जाने पर घटता है।
(viii) जैसे-जैसे विद्युत धरावाही सीधे चालक तार से दूर हटते जाते हैं, उसके चारों ओर उत्पन्न चुंबकीय क्षेत्र को निरूपित करने वाले संकेंद्री वृत्तों का साइज़ बड़ा हो जाता है।
दक्षिण हस्त अंगुष्ठ नियम (Right hand thumb Rule): 
कल्पना कीजिए कि आप अपने दाहिने हाथ में विद्युत धरावाही चालक को इस प्रकार पकड़े हुए हैं कि आपका अँगूठा विद्युत धरा की दिशा की ओर संकेत करता है, तो आपकी अँगुलियाँ चालक के चारों ओर चुंबकीय क्षेत्र की क्षेत्र रेखाओं की दिशा में लिपटी होंगी | इस नियम को दक्षिण-हस्त अंगुष्ठ नियम कहते हैं |
इस नियम को मैक्सवेल का कॉर्कस्क्रू नियम भी कहते हैं |

विद्युत धरावाही वृत्ताकार पाश के कारण चुंबकीय क्षेत्र :
Magnetic Field due to a Current through a Circular Loop:
किसी विद्युत धरावाही चालक के कारण उत्पन्न चुंबकीय क्षेत्र उससे दूरी के व्युत्क्रम पर निर्भर करता है। इसी प्रकार किसी विद्युत धरावाही पाश के प्रत्येक बिंदु पर उसके चारों ओर उत्पन्न चुंबकीय क्षेत&22381;र को निरूपित करने वाले संकेंद्री वृत्तों का साइज़ तार से दूर जाने पर निरंतर बड़ा होता जाता है 
विद्युत धरावाही वृत्ताकार पाश के कारण चुंबकीय क्षेत्र का गुण:
Properties of magnetic field line of a current through a circular loop: 
(i) वृत्ताकार पाश के केंद्र पर इन बृहत् वृत्तों के चाप सरल रेखाओं जैसे प्रतीत होने लगते हैं।
(ii) विद्युत धरावाही तार के प्रत्येक बिंदु से उत्पन्न चुंबकीय क्षेत्र रेखाएँ पाश के केंद्र पर सरल रेखा जैसी प्रतीत होने लगती हैं।
(iii) पाश के भीतर सभी चुंबकीय क्षेत्र रेखाएँ एक ही दिशा में होती हैं।                                
  • किसी विद्युत धरावाही तार के कारण किसी दिए गए बिंदु पर उत्पन्न चुंबकीय क्षेत्र प्रवाहित विद्युत धरा पर अनुलोमतः निर्भर करता है।
  • यदि हमारे पास n फेरों की कोई कुंडली हो तो उत्पन्न चुंबकीय क्षेत्र परिमाण में एकल फेरों द्वारा उत्पन्न चुंबकीय क्षेत्र की तुलना में n गुना अधिक प्रबल होगा। इसका कारण यह है कि प्रत्येक फेरों में विद्युत धारा के प्रवाह की दिशा समान है, अतः व्यष्टिगत फेरों के चुंबकीय क्षेत्र संयोजित हो जाते हैं।


परिनालिका (Solenoid): पास-पास लिपटे विद्युतरोधी ताँबे के तार की बेलन की आकृति की अनेक फेरों वाली कुंडली को परिनालिका कहते हैं।
परिनालिका में प्रवाहित विद्युत धारा के कारण चुम्बकीय क्षेत्र :
Magnetic Field due to a Current in a Solenoid: 
जब विद्युत धारा किसी परिनालिका से होकर गुजरती है | तो इसका एक सिरा चुम्बक के उतरी ध्रुव की तरह व्यवहार करता है जबकि दूसरा सिरा दक्षिणी ध्रुव की तरह व्यवहार करता है |
               
परिनालिका के भीतर और उसके चारों ओर चुम्बकीय क्षेत्र की क्षेत्र रेखाओं का गुण :
Properties of the field lines inside the solenoid: 
  • परिनालिका के भीतर चुंबकीय क्षेत्र रेखाएँ समांतर सरल रेखाओं की भाँति होती हैं।
  • यह निर्दिष्ट करता है कि किसी परिनालिका के भीतर सभी बिंदुओं पर चुंबकीय क्षेत्र समान होता है। अर्थात परिनालिका के भीतर एकसमान चुंबकीय क्षेत्र होता है।
  • परिनालिका के भीतर चुंबकीय क्षेत्र रेखाएँ समांतर सरल रेखाओं की भाँति होती हैं। परिनालिका के चुम्बकीय क्षेत्र रेखाओं के इस गुण का उपयोग विद्युत चुम्बक बनाने में किया जाता है | 
  • परिनालिका के भीतर एक प्रबल चुम्बकीय क्षेत्र उत्पन्न होता है | 
विद्युत चुम्बक (Electromagnet) : परिनालिका के भीतर उत्पन्न प्रबल चुंबकीय क्षेत्र का उपयोग किसी चुंबकीय पदार्थ, जैसे नर्म लोहे, को परिनालिका के भीतर रखकर चुंबक बनाने में किया जाता है । इस प्रकार बने चुंबक को विद्युत चुंबक कहते हैं।
विद्युत चुंबक का गुण (Some properties of electromagnet) : 
1. समान्यत: इसके द्वारा उत्पन्न चुंबकीय क्षेत्र अधिक प्रबल होता है |
2. चुम्बकीय क्षेत्र की ताकत को परिनालिका में फेरों की संख्या और विद्युत धारा जैसे नियंत्रण करने वाली विभिन्न कारकों के द्वारा नियंत्रित की जा सकती है |
3. परिनालिका से उत्पन्न चुम्बकीय क्षेत्र का ध्रुवत्व प्रवाहित विद्युत की दिशा में परिवर्तन कर उत्क्रमित किया जा सकता है |
विद्युत चुंबक और स्थायी चुंबक में अंतर :
Differences between electromagnet and parmanent magnet: 
 विद्युत चुंबक  स्थायी चुंबक
1. विद्युत चुंबक द्वारा उत्पन्न चुंबकीय क्षेत्र समान्यत: अधिक प्रबल होता है | 1. समान्यत: इसके द्वारा उत्पन्न चुंबकीय क्षेत्र कम प्रबल होता है | 
2. चुम्बकीय क्षेत्र की ताकत को परिनालिका में फेरों की संख्या और विद्युत धारा जैसे नियंत्रण करने वाली विभिन्न कारकों के द्वारा नियंत्रित की जा सकती है | 2. स्थायी चुंबक के चुंबकीय क्षेत्र की ताकत स्थायी होता है, परन्तु तापमान में परिवर्तन कर इसे कम किया जा सकता है |
3. इसकी ध्रुवता धारा में परिवर्तन कर उत्क्रमित किया जा सकता है | 3. इसकी ध्रुव में परिवर्तन नहीं किया जा सकता है |
4. विद्युत चुंबक बनाने के लिए समान्यत: मृदु लोहे का उपयोग किया जाता है | 4. इस उदेश्य लिए कोबाल्ट या स्टील का प्रयोग किया जाता है | 
FORCE ON A CURRENT-CARRYING CONDUCTOR IN A MAGNETIC FIELD:
एक प्रबल नाल चुंबक इस प्रकार से व्यवस्थित कीजिए कि छड़ नाल चुंबक के दो ध्रुवों के बीच में हो तथा चुंबकीय क्षेत्रा की दिशा उपरिमुखी हो। ऐसा करने के लिए नाल चुंबक का उत्तर ध्रुव ऐलुमिनियम की छड़ के ऊर्ध्वाधरतः नीचे हो एवं दक्षिण ध्रुव ऊर्ध्वाधरतः ऊपर हो । जब विद्युत धारा एल्युमीनियम छड के सिरा B से सिरा A तक होकर गुजरता है तो ऐसा देखा जाता है कि छड विस्थापित होता है | ऐसा भी देखा जाता है कि जब धारा की दिशा को परिवर्तित किया जाता है तो छड की विस्थापन की दिशा भी बदल (उत्क्रमित हो) जाती है | 
                     
निष्कर्ष (Conclusion) : 
(i) A magnetic field exerts a force on a magnet placed in the vicinity of the conductor.
(ii) A force is exerted on the current-carrying aluminium rod when it is placed
in a magnetic field.
(iii) The direction of force is also reversed when the direction of current through the conductor is reversed.
(iv) The direction of force acting on the current-carrying rod gets reversed when
the direction of current is reversed.
(v) The force on the conductor depends upon the direction of current and the direction of the magnetic field.
The force on the conductor:
The force on the conductor depends upon the flowing two things:
(i) The direction of current and
(ii) The direction of the magnetic field.

12. विद्युत


12. विद्युत


12.  (Elecricity) 

विद्युत आवेश

घर्षणीक विद्युत (Frictional electricity): रगड़ या घर्षण से उत्पन्न विद्युत को घर्षणीक विद्युत कहते हैं |
विद्युत आवेश (Electric charge): विद्युत आवेश दो प्रकार के होते हैं |
1. धन आवेश (Positive charge): कांच कि छड को जब रेशम के धागे से रगडा जाता है तो इससे प्राप्त आवेश को धन आवेश कहते हैं |
2. ऋण आवेश (Negative charge): एबोनाईट कि छड को ऊन के धागे से रगडा जाता है तो इस प्रकार प्राप्त आवेश को ऋण आवेश कहा जाता है |
  • इलेक्ट्रानों कि कमी के कारण धन आवेश उत्पन्न होता है | 
  • इलेक्ट्रानों कि अधिकता से ऋण आवेश उत्पन्न होता है | 
विद्युत स्थैतिकता का आधारभूत नियम (Fundamental law of electrostatics): 
  • समान आवेश एक दुसरे को प्रतिकर्षित करती हैं |  
  • असमान आवेश एकदूसरे को आकर्षित करती हैं | 
स्थैतिक विद्युत (Statics electricity): जब विद्युत आवेश विराम कि स्थिति में रहती हैं तो इसे स्थैतिक विद्युत कहते हैं |
धारा विद्युत (Current electricity): जब विद्युत आवेश गति में होता है तो इसे धारा विद्युत कहते हैं |
विद्युत धारा एवं आवेश (Electric Current And Charge):
जब किसी चालक से विद्युत आवेश बहता है तो हम कहते है कि चालक में विद्युत धारा है |
दुसरे शब्दों में, विद्युत आवेश के बहाव को विद्युत धारा कहते है |  
विद्युत धारा को इकाई समय में किसी विशेष क्षेत्र से विद्युत आवेशों  की मात्रा के बहाव से व्यक्त किया जाता है | 
  • विद्युत धारा किसी चालक/तार से होकर बहता है |
  • विद्युत धारा एक सदिश राशि है |  
इलेक्ट्रोनों का बहाव (Flowing/moving of electrons) :
इलेक्ट्रोंस बैटरी के ऋणात्मक टर्मिनल पर ऋण आवेश के द्वारा प्रतिकर्षित होते हैं तथा धन टर्मिनल पर धन आवेश पर आकर्षित होते हैं | इसलिए इलेक्ट्रोंस ऋण टर्मिनल से धन टर्मिनल की ओर प्रवाहित होते हैं | जब ये इलेक्ट्रॉन्स धन टर्मिनल तक पहुँचते हैं तो एक रासायनिक प्रतिक्रिया से वे बैट्री के अंदर स्थान्तरित हो जाते हैं और और पुन: ऋण टर्मिनल पर आ जाते हैं | इस प्रकार इलेक्ट्रॉन्स प्रवाहित होते हैं |

          (एक परिपथ तथा बैट्री से इलेक्ट्रान का बहाव )  
चालक (Conductor) :
वे पदार्थ जो अपने से होकर विद्युत आवेश को आसानी से प्रवाहित होने देते हैं चालक कहलाते हैं | उदाहरण : तांबा, सिल्वर, एल्युमीनियम इत्यादि |
  • अच्छे चालक धारा के प्रवाह का कम प्रतिरोध करते हैं |
  • कुचालकों का धारा के प्रवाह की प्रतिरोधकता बहुत अधिक होती है | 
कुचालक (Insulator) : वे पदार्थ जो अपने से होकर विद्युत धारा को प्रवाहित नहीं होने देते हैं वे पदार्थ विद्युत के कुचालक कहलाते हैं | उदाहरण : रबड़, प्लास्टिक, एबोनाईट और काँच इत्यादि |
चालकता (Cunductivity) : चालकता किसी चालक का वह गुण है जिससे यह अपने अंदर विद्युत आवेश को प्रवाहित होने देते हैं |
अतिचालकता (Supercunductivity) : अतिचालकता किसी चालक में होने वाली वह परिघटना है जिसमें वह बहुत कम ताप पर बिल्कुल शून्य विद्युत प्रतिरोध करता है |
कूलाम्ब का नियम (Coulomb's law) : किसी चालक के दो बिन्दुओं के बीच आवेशों पर लगने वाले आकर्षण या प्रतिकर्षण बल, आवेशों के  गुणनफल (q1q2) के अनुक्रमानुपाती होते हैं और उनके बीच की दुरी (r) के वर्ग का व्युत्क्रमानुपाती होते हैं | 
गणितीय विधि से ,
F ∝ q1q2          ......................... (i) 
F ∝ 1/ r2          ..........................(ii)

k एक स्थिरांक है परन्तु k का मान दो आवेशों के बीच उपस्थित माध्यम की प्रकृति पर निर्भर करता है |
k का निर्वात में आवेश  9 × 109 Nm2/C2 होता है |
विद्युत परिपथ (Electric Circuit) :
किसी विद्युत धारा के सतत तथा बंद पथ को विद्युत परिपथ कहते हैं |
विद्युत का प्रवाह (The flow of the electricity):
आवेशों की रचना इलेक्ट्रोन करते हैं | विद्युत धारा को धनआवेशों का प्रवाह माना गया तथा धनावेश के प्रवाह की दिशा ही विद्युत धारा की दिशा माना गया | परिपाटी के अनुसार किसी
विद्युत परिपथ में इलेक्ट्रॉनों जो ऋणआवेश हैं, के प्रवाह की दिशा के विपरीत दिशा को
विद्युत धारा की दिशा माना जाता है।
यदि किसी चालक की किसी भी अनुप्रस्थ काट से समय t में नेट आवेश Q प्रवाहित होता है तब उस अनुप्रस्थ काट से प्रवाहित विद्युत धारा I को इस प्रकार व्यक्त करते हैंः
I = Q/t
विद्युत आवेश का SI मात्रक (unit) कूलम्ब (C) है, जो लगभग 6×1018 इलेक्ट्रोनों में समाए आवेश के तुल्य होता है |
कूलम्ब (Coulomb) : विद्युत आवेश का SI मात्रक (unit) कूलम्ब (C) है, जो लगभग 6×1018 इलेक्ट्रोनों में समाए आवेश के तुल्य होता है | 
एक इलेक्ट्रान पर आवेश = -1.6 × 10-19 कूलम्ब (C).
एक प्रोटोन पर आवेश = 1.6 × 10-19 कूलम्ब (C).
आवेश संरक्षण का नियम (Law of conservation of charge): विद्युत आवेशों को न तो उत्पन्न किया जा सकता है और न ही विनाश किया जा सकता है | इसका सिर्फ एक पिंड से दुसरे पिंड तक स्थानांतरण किया जा सकता है |
एम्पियर (Ampere): यह विद्युत धारा का SI मात्रक है | जब एक कूलम्ब आवेश को किसी चालक से 1 सेकंड तक प्रवाहित किया जाता है तो इसे 1 एम्पियर धारा कहते है |
1A = 1C/1s;
  • धारा की छोटी मात्रा को मिलीएम्पियर में मापा जाता है |
  • (1 mA = 10-3 A) या मिलीएम्पियर (1 μA = 10-6 A)  
विद्युत धारा परिपथ में बैट्री या सेल के धन टर्मिनल (+) से ऋण टर्मिनल (-) की ओर प्रवाहित होती है |
ऐमीटर (Ammeter): परिपथों की विद्युत धारा मापने के लिए जिस यंत्र का उपयोग करते हैं उसे ऐमीटर कहते हैं।
इसे सदैव जिस परिपथ में विद्युत धारा मापनी होती है, उसके श्रेणीक्रम में संयोजित करते हैं।
गैल्वेनोमीटर (Galvanometer) : It गैल्वेनोमीटर एक युक्ति है जो किसी विद्युत परिपथ में उपस्थित धारा का पता लगाता है |
परंपरागत धारा (Conventional current) : ,परंपरागत रूप से, धन आवेशों की गति की दिशा को धारा की दिशा माना जाता है | परंपरागत धारा की दिशा, प्रवाहित  होने वाले इलेक्ट्रोनों की दिशा का विपरीत होता है |
वैद्युतस्थैतिक विभव (Electrostatic potential) : 
Electrostatic potential at any point in an electric field is defined as the amount of work done in bringing a unit positive charge of one coulomb from infinity to that point. Its unit is volt.
Potential Difference:
The electrons move only if there is a difference of electric pressure, this difference in electric pressure is called the potential difference – along the conductor.
  • This difference of potential may be produced by a battery, consisting of one or more electric cells.
  • The chemical action within a cell generates the potential difference across the terminals of the cell, even when no current is drawn from it.
  • When the cell is connected to a conducting circuit element, the potential difference sets the charges in motion in the conductor and produces an electric current. In order to maintain the current in a given electric circuit, the cell has to expend its chemical energy stored in it.
Potential difference between two points: 
the electric potential difference between two points in an electric circuit carrying some current as the work done to move a unit charge from one point to the other.

Or

  • The SI unit of electric potential difference is volt (V), named after Alessandro Volta (1745–1827), an Italian physicist.
Voltmeter: 
The potential difference is measured by means of an instrument called
the voltmeter.
One volt potential difference: 
One volt is the potential difference between two points in a current carrying conductor when 1 joule of work is done to move a charge of 1 coulomb from one point to the other.

Connection of voltmeter:
The voltmeter is always connected in parallel across the points between which the potential difference is to be measured.
Cells Or Battery: It is a device which helps to maintain the potential difference between two points of conductor.
Electromotive force (EMF): It is a force applied by cell or battery to produce electric current through a wire.
Ohm's Law:
The electric current flowing through a metallic wire is directly proportional to the potential difference V, across its ends provided its temperature remains the same. This is called Ohm’s law.
According to this law.
V ∝ I            or  V = RI 
see this volt-current graph 

if potential difference is increased then electric current also increases.
And if potential difference is decreases then electric current also decreases.
Resistance: 
It is the property of a conductor to resist the flow of charges through it.
Using ohm law:
Resistance = Potential difference/Current

  • SI units of resistance is Ohm(Ω).
  • V/I = R, which is a constant. 
1 Ohm of resistance: if the potential difference across the two ends of a conductor is 1 V and the current through it is 1 A, then the resistance R, of the conductor is 1 Ω.

  • The current through a resistor is inversely proportional to its resistance.
  • If the resistance is doubled the current gets halved.
  • In many practical cases it is necessary to increase or decrease the current in an electric circuit.
Variable resistance: A component used to regulate current without changing the voltage source is called variable resistance.
Rheostat: It is a device which is often used to change the resistance in the electric circuit.
Resistor: A conductor having some appreciable resistance is called a resistor.
Some points:
  • Certain components offer an easy path for the flow of electric current while the others resist the flow.
  • motion of electrons in an electric circuit constitutes an electric current.
  • The electrons, however, are not completely free to move within a
    conductor.
  • They are restrained by the attraction of the atoms among which they move.
  • motion of electrons through a conductor is retarded by its resistance.
Good conductor: A component of a given size that offers a low
resistance is a good conductor.
Poor conductor: A component of identical size that offers a higher resistance is a poor conductor.
Resistance of a conductor depends on followings factors:
(i) On Length of conductor.
(ii) On Area of cross-section of conductor.
(iii) On the nature of conductor's materail.
Relation among Length, Area and Resistance:
Resistance of a uniform metallic conductor is directly proportional to its length (l) and inversely proportional to the area of cross-section (A).
This gives:
          R ∝ l                              ..................  (i)
and    R ∝ l/A                           ................... (ii)
        R ∝ l/A                          using (i) and (ii) 
or, 

where ρ (rho) is a constant of proportionality and is called the electrical
resistivity of the material of the conductor.
The SI unit of resistivity is Ω m.
Resistivity: Resistivity is a characteristic property of the material. S. I unit of resistivity is ohm (Ω). It is denoted by p.
  • The metals and alloys have very low resistivity in the range of 10-8 Ω m to 10-6 Ω m.They are good conductors of electricity.
  • Insulators like rubber and glass have resistivity of the order of 1012 to 1017 Ω m.
  • Both the resistance and resistivity of a material vary (परिवर्तित) with temperature.
मिश्रधातुओं के गुण (Charactristics of alloy):
(i) एलॉय जिस धातु से बने होते है उन धातुओं की तुलना में उनसे बने मिश्र धातुओं का गलनांक अधिक होता है |
(ii) मिश्रधातु ऊँच तापमान पर भी आसानी से इनका दहन नहीं होता है |
(iii) इनका गलनांक ऊँच होता है |
यही कारण है की मिश्रधातुओं का उपयोग सामान्यत: विद्युत तापक यंत्रों में किया जाता है, जैसे - विद्युत इस्त्री , टोस्टर इत्यादि |  विद्युत बल्बों की तंतु के लिए एकमात्र टंगस्टन का ही उपयोग किया जाता है | टंग्स्टन एक मिश्रधातु है जिसका गलनांक बहुत ही ऊँच होता है | जहाँ तांबा और एल्युमीनियम का सामान्य उपयोग विद्युत प्रवाह चालक के रूप में किया जाता है |


विद्युत धारा का तापीय प्रभाव: 
  • सेल के भीतर होने वाली रासायनिक अभिक्रिया सेल केदो टर्मिनलों के बीच विभवान्तर उत्पन्न करती है, जो बैटरी से संयोजित किसी प्रतिरोधक अथवा प्रतिरोधकों के किसी निकाय में विद्युत धारा प्रवाहित करने के लिए इलेक्ट्रानों में गति स्थापित करता है | 
  • विद्युत धारा को बनाए रखने में अथवा साधित्रों/उपकरणों को कार्य करवाने में स्रोत कि ऊर्जा का कुछ भाग खर्च हो जाता है जबकि शेष ऊर्जा साधित्रों/उपकरणों के ताप को वृद्धि करने में खर्च हो जाता है |  
विद्युत धारा का तापीय प्रभाव: स्रोत की ऊर्जा का कुछ ही भाग उपयोगी कार्यों में उपयोग होता है | स्रोत का शेष ऊर्जा उस ऊष्मा को उत्पन्न करने में खर्च हो जाता है जो उस साधित्र/उपकरण कि ताप में वृद्धि करता है | इसे विद्युत का तापीय प्रभाव कहते हैं |
जूल तापन का नियम: किसी प्रतिरोधक में उत्पन्न होने वाली ऊष्मा दिए गए प्रतिरोधक में प्रवाहित होने वाली विद्युत धारा के वर्ग के अनुक्रमानुपाती होती है एवं दी गयी विद्युत धारा के लिए प्रतिरोध और उस समय के अनुक्रमानुपाती होती है जिसके लिए दिए गए प्रतिरोध से विद्युत धारा प्रवाहित होती है | इस नियम को जूल तापन का नियम कहते हैं |
इसे H से सूचित करते हैं |
H = I2Rt
इस नियम से किसी साधित्र या प्रतिरोधक में विद्युत धारा के तापीय प्रभाव द्वारा उत्पन्न ऊष्मा को ज्ञात किया जाता है |
इस नियम के अनुसार:
किसी प्रतिरोधक में उत्पन्न होने वाली ऊष्मा (H)
(i) प्रतिरोधक में प्रवाहित होने वाली विद्युत धारा (I) के वर्ग के अनुक्रमानुपाती होती है | 
(ii) उस प्रतिरोध (R) के अनुक्रमानुपाती होती है |
(iii) समय (t) के अनुक्रमानुपाती होती है |
जूल तापन के नियम को अर्थात (H = I2Rt) को गणितीय स्तर पर समझते हैं : 
मान लीजिए कि किसी प्रतिरोधक (R) में (t) समय के लिए यदि विद्युत धारा प्रवाहित की जाती है एवं इसके दोनों सिरों के बीच विभवान्तर (V) है | 

विद्युत धारा के तापीय प्रभाव के कुछ अनुप्रयोग:
(1) विद्युत हीटर
(2) विद्युत इस्तरी
(3) विद्युत गीजर
(4) विद्युत टोस्टर
(5) विद्युत् बल्ब
नोट: उपरोक्त सभी साधित्र/उपकरण विद्युत धारा के तापीय प्रभाव के प्रयोग से चलायी जाती है |
विद्युत धारा के तापीय प्रभाव से विद्युत परिपथ के अवयवों पर प्रभाव :
(i) अवयवों के ताप में वृद्धि कर सकता है |
(ii) अवयवों के गुणों में परिवर्तन हो सकता है |
उदाहरण:


 (पेज अभी बन रहा है.......................................)

11. मानव-नेत्र एवं रंगबिरंगी दुनियाँ


11. मानव-नेत्र एवं रंगबिरंगी दुनियाँ


मानव नेत्र और उसके भाग-



परिचय: 
मानव नेत्र (Human Eyes): मानव नेत्र एक अत्यंत मूल्यवान एवं सुग्राही ज्ञानेंद्रिय हैं। यह कैमरे की भांति कार्य करता हैं । हम इस अद्भूत संसार के रंग बिरंगे चीजो को इसी द्वारा देख पाते हैं। इसमें एक क्रिस्टलीय लेंस होता है। प्रकाश सुग्राही परदा जिसे रेटिना या दृष्टिपटल कहते हैं इस पर प्रतिबिम्ब बनता हैं । प्रकाश एक पतली झिल्ली से होकर नेत्र में प्रवेश करता हैं। इस झिल्ली को कॉर्निया कहते हैं । कॉर्निया के पीछे एक संरचना होती है। जिसे परितारिका कहते हैं। यह पुतली के साइज को नियंत्रित करती है। जबकि पुतली नेत्र में प्रवेश करने वाले प्रकाश को नियंत्रित करता हैं। लेंस दूर या नजदीक के सभी प्रकार के वस्तुओं का समायोजन कर वास्तविक तथा उल्टा प्रतिबिम्ब बनाता है।

नेत्र के विभिन्न भाग परिचय और कार्य: 
(1) कॉर्निया या स्वच्छ मंडल (Cornia) : नेत्र की काला दिखाई देने वाला गोलाकार भाग को कॉर्निया कहते हैं | यह नेत्र के डायफ्राम के ऊपर स्थित एक पतली झिल्ली होती है |
कार्य : इसी से होकर नेत्र में प्रकाश प्रवेश करता है | यह नेत्र का सबसे नाजुक भाग होता है |

(2) कंजक्टिवा (conjactiva): अग्र नेत्र का सफ़ेद भाग को sclera कहते है और इसके covering को जो कॉर्निया के चरों ओर फैला रहता है, कंजक्टिवा कहते है | इसे आँख का रक्षात्मक कवच भी कहा जा सकता है |
कार्य:
(i) यह नेत्र को बाहरी तत्वों से रक्षा करता है |
(ii) नेत्र को चिकनाहट प्रदान करता है |
(iii) यह आँख को बाहरी अघात से भी बचाता है |
(3) परितारिका (Iris) : यह कॉर्निया के पीछे स्थित होता है, यह एक गहरा वलयाकार पेशीय डायफ्राम है |
             
               परितारिका (Iris)
कार्य : यह पुतली के आकार (size) को नियंत्रित करता है |
(4) पुतली (Pupil) : यह परतारिका के वलय से बना एक रिक्त स्थान (छिद्र) है जो परितारिका के केंद्र में होता है और अभिनेत्र लेंस में जा कर खुलता है |
         
कार्य : यह नेत्र में प्रवेश करने वाले प्रकाश कि मात्रा को नियंत्रित करता है |
जब परितारिका सिकुड़ता है तो पुतली की साइज़ कम हो जाता है और नेत्र में प्रवेश करने वाले प्रकाश कि मात्रा भी कम हो जाता है | और जब परतारिका फैलता है तो पुतली का साइज़ भी बढ़ जाता है और नेत्र में प्रवेश करने वाले प्रकाश कि मात्रा भी बढ़ जाता है |
(5) अभिनेत्र लेंस (Eye lens) या क्रिस्टलीय लेंस (Cristalic lens): अभिनेत्र लेंस एक लचीला और मुलायम पदार्थ से बना एक अपारदर्शी उत्तल लेंस है जो विभिन्न दूरियों कि वस्तुओं को फोकसित करने के लिए अपना आकार बदलता रहता है |
कार्य: यह वस्तुओ का वास्तविक और उल्टा प्रतिबिम्ब बनाता है |
(6) पक्ष्माभी पेशियाँ (Cilliary Muscles) : ये पेशियाँ अभिनेत्र लेंस को जकडे रखती है और यह लेंस के आकार (size) को नियंत्रित करती हैं | यदि किसी कारण से इन पेशियों में दुर्बलता आ जाती है तो अभिनेत्र लेंस अपना आकार बदल नहीं पता है और उसकी समंजन क्षमता घट जाती है |
             
                    पार्श्व दृश्य (lateral view) 
पक्ष्माभी पेशियों का कार्य : यह लेंस के आकार (size) को नियंत्रित करती हैं |
(7) काचाभ द्रव (Vitreous Humor) : यह एक जेली जैसी पदार्थ का बना होता है जो अभिनेत्र लेंस और रेटिना से लेकर पुरे नेत्र गोलक में भरा रहता है | नेत्र गोलक का अधिकांश भाग काचाभ द्रव घेरता (occupies) है | 
कार्य:
(i) यह नेत्र गोलक को आकार प्रदान करता है |
(ii) रेटिना तक पहुँचने वाला प्रकाश लेंस से होकर इसी द्रव से गुजरता है |
(8) रेटिना (Retina) : इसे दृष्टि पटल भी कहते है और यह नेत्र गोलक का पश्च भाग जो परदे का कार्य करता है रेटिना कहलाता है | यह नेत्र का प्रकाश सुग्राही भाग (Light sensative part) होता है |
रेटिना पर बनने वाले प्रतिबिम्ब कि प्रकृति वास्तविक एवं उल्टा होता है |
कार्य:
(i) यह नेत्र लेंस द्वारा बनने वाले प्रतिबिम्ब के लिए परदे का कार्य करता है |
(ii) इसकी कोशिकाएं प्रकाश सुग्राही होती हैं जो इस पर बनने वाले प्रतिबिम्ब का अध्ययन भी करता है |
(9) दृक तंत्रिका (Optic Nerve) : यह तंत्रिका नेत्र गोलक के पश्च भाग से निकल कर मस्तिष्क के एक हिस्से से जुड़ता है |
कार्य: यह रेटिना पर बनने वाले प्रतिबिम्ब को संवेदनाओं द्वारा मस्तिष्क तक पहुँचाता है |

समंजन क्षमता और नेत्र दोष-



समंजन क्षमता (Power of Accommodation): अभिनेत्र लेंस की वह क्षमता जिसके कारण वह अपनी फोकस दूरी को समायोजित कर लेता हैं समंजन क्षमता कहलाती हैं।
ऐसा नेत्र की वक्रता में परिवर्तन होन पर इसकी फोकस दूरी भी परिवर्तित हो जाती हैं । नेत्र की वक्रता बढ़ने पर फोकस दूरी घट जाती हैं। जब नेत्र की वक्रता घटती हैं तो फोकस दूरी बढ़ जाती है।
मानव नेत्र की देखने कि सीमा (Limitation of vision) : 25 सेमी से अनंत तक होती है |
किसी वस्तु की स्पष्ट देखने कि न्यूनतम दुरी 25 सेमी है और स्पष्ट देखने कि अधिकतम सीमा अनंत (infinity) होती है |
निकट बिंदु (Near Point) : वह न्यूनतम दुरी जिस पर रखी कोई वस्तु बिना किसी तनाव के अत्याधिक स्पष्ट देखि जा सकती है, सुस्पष्ट देखने की इस न्यूनतम दुरी को निकट-बिंदु कहते हैं |
समान्यत: देखने कि यह न्यूनतम दुरी 25 सेमी होती है |
अत: हमें किसी वस्तु को स्पष्ट देखने के लिए उसे नेत्र से 25 सेमी दूर रखा जाना चाहिए |
दूर बिंदु (Far Point) : वह दूरतम बिंदु जिस तक कोई नेत्र वस्तुओं को सुस्पष्ट देख सकता है, नेत्र का दूर-बिंदु (Far Point)  कहलाता है। सामान्य नेत्र के लिए यह अनंत दूरी पर होता है।
मोतियाबिंद (Cataract) : कभी कभी अधिक उम्र के कुछ व्यक्तियों में क्रिस्टलीय लेंस पर एक धुँधली परत चढ़ जाती है। जिससे लेंस दूधिया तथा धुँधली हो जाता है। इस स्थिति को मातियाबिन्द कहते हैं।
कारण: मोतियाबिंद क्रिस्टलीय लेंस के दूधियाँ एवं धुंधला होने के कारण होता है |
निवारण : इसे शल्य चिकित्सा (surgeory) के द्वारा दूर किया जाता हैं।
दृष्टि दोष : कभी कभी नेत्र धीरे - धीरे अपनी समंजन क्षमता खो देते हैं। ऐसी स्थिति में व्यक्ति वस्तुओं को आराम से सुस्पष्ट नही देख पाते हैं। नेत्र में अपवर्तन दोषो के कारण दृष्टि धुँधली हो जाती हैं। इसे दृष्टि दोष कहते हैं।
यह समान्यतः तीन प्रकार के होते हैं। इसे दृष्टि के अपवर्तन दोष भी कहा जाता है | 
1.    निकट - दृष्टि दोष (मायोपिया)
2.    दीर्ध - दृष्टि दोष (हाइपरमायोपिया)
3.    जरा - दूरदृष्टिता (प्रेसबॉयोपिया)
1. निकट-दृष्टि दोष (Myopia) : निकट-दृष्टि दोष (मायोपिया) में कोई व्यक्ति निकट की वस्तुओं को स्पष्ट देख तो सकता हैं परन्तु दूर रखी वस्तुओं को वह सुस्पष्ट नहीं देख पाता है। ऐसे व्यक्ति का दूर बिन्दु अनंत पर न होकर नेत्र के पास आ जाता हैं । इसमें प्रतिबिम्ब दृष्टि पटल पर न बनकर दृष्टिपटल के सामने बनता है।
कारण: 
(i) अभिनेत्र लेंस की वक्रता का अत्याधिक होना | अथवा
(ii)  नेत्र गोलक का लंबा हो जाना।
निवारण: इस दोष को किसी उपयुक्त क्षमता के अपसारी (अवतल ) लेंस के उपयोग द्वारा संशोधित किया जा सकता हैं।
निकट-दृष्टि दोष और प्रकाश किरण आरेख द्वारा संशोधन : 
निकट-दृष्टि दोष का प्रकाश किरण आरेख : 
स्थिति I -  हम जानते है कि दूर बिंदु अनंत पर होता है यह एक समान्य स्थिति है |

                        (i) समान्य स्थिति 
स्थिति II - परन्तु इस प्रकार के दोष में दूर बिंदु अनंत पर न होकर नेत्र के पास आ जाता है | तब इस दोष से ग्रसित व्यक्ति नजदीक रखी वस्तुओं को तो देख पाता है परन्तु दूर रखी वस्तु को सुस्पष्ट नहीं देख पाता है | इसका कारण यह है कि दूर बिंदु आँख के पास आ जाता है | इसके कारण प्रतिबिम्ब रेटिना पर न बनकर प्रतिबिम्ब रेटिना के सामने बनता है | देखिये प्रकाश किरण आरेख (ii) 

                          (ii) निकट-दृष्टि दोष युक्त नेत्र 
स्थिति III - निवारण (संशोधन) : इस स्थिति के निवारण के लिए किसी उपयुक्त क्षमता के अपसारी (अवतल ) लेंस के उपयोग द्वारा संशोधित किया जाता हैं।

2. दीर्घ-दृष्टि दोष (Hypermetropia) : दीर्ध - दृष्टि दोष (हाइपरमायोपिया) में कोई व्यक्ति दूर की वस्तुओं को स्पष्ट देख तो सकता हैं परन्तु निकट रखी वस्तुओं को वह सुस्पष्ट नहीं देख पाता है। ऐसे व्यक्ति का निकट बिन्दु समान्य निकट बिन्दू 25 सेमी पर न होकर दूर हट जाता हैं ।इसमें प्रतिबिम्ब दृष्टिपटल पर न बनकर दृष्टिपटल के पीछे बनता है। ऐसे व्यक्ति को स्पष्ट देखने के लिए पठन सामग्री को नेत्र से 25 सेमी से काफी अधिक दूरी पर रखना पडता हैं ।
कारण: 
(i) अभिनेत्र लेंस की फोकस दूरी का अत्याधिक हो जाना अथवा
(ii) नेत्र गोलक का छोटा हो जाना।
निवारण: इस दोष को किसी उपयुक्त क्षमता के अभिसारी (उतल ) लेंस के उपयोग द्वारा संशोधित किया जा सकता हैं।
दीर्घ-दृष्टि दोष एवं प्रकाश किरण आरेख द्वारा संशोधन : 
दीर्घ-दृष्टि दोष का प्रकाश किरण आरेख : 
स्थिति-I : एक समान्य नेत्र का निकट बिंदु 25 सेमी होता है जो इस दृष्टि दोष में 25 सेमी से हट जाता है | 

                      (i) एक समान्य नेत्र का निकट बिंदु
स्थिति-II : ऐसे दृष्टि दोष वाले व्यक्ति का निकट बिन्दु समान्य निकट बिन्दू 25 सेमी पर न होकर दूर हट जाता हैं ।इसमें प्रतिबिम्ब दृष्टिपटल पर न बनकर दृष्टिपटल के पीछे बनता है। 

                    (ii) दीर्घ-दृष्टि दोष युक्त नेत्र 
स्थिति-III- एक उपयुक्त क्षमता के संशोधक लेंस द्वारा इस दृष्टि दोष का निवारण किया जाता है | 

                    (iii) उत्तल लेंस द्वारा संशोधन 
3. जरा-दूरदृष्टिता (Presbyopia) : यु में वृद्धि होने के साथ साथ मानव नेत्र की समंजन - क्षमता घट जाती हैं। अधिकांश व्यक्तियों का का निकट बिन्दु दूर हट जाता हैं इस दोष को जरा दूरदृष्टिता कहते है ।
इस दृष्टि दोष में कुछ व्यक्तियों में कई बार दोनों प्रकार के दृष्टि दोष जैसे - निकट-दृष्टि दोष और दीर्घ-दृष्टि दोष पाए जाते हैं |
कारण: इन्हें पास की वस्तुए अराम से देखने में कठिनाई होती हैं।जिसका निम्न कारण है :
(i) यह दोष पक्ष्माभी पेशियों के धीरे धीरे दुर्बल होने के कारण तथा
(ii) क्रिस्टलीय लेंस की लचीलेपन में कमी के कारण उत्पन्न होता हैं ।
निवारण: इसे द्विफोकसी लेंस के उपयोग से दूर किया जा सकता है।
द्विफोकसी लेंस : सामान्य प्रकार के द्विफोकसी लेंसों में अवतल तथा उत्तल दोनों
लेंस होते हैं। ऊपरी भाग अवतल लेंस होता है। यह दूर की वस्तुओं को सुस्पष्ट देखने
में सहायता करता है। निचला भाग उत्तल लेंस होता है। यह पास की वस्तुओं को सुस्पष्ट
देखने में सहायक होता है।
आजकल संस्पर्श लेंस (contact lens) का प्रयोग से दृष्टि दोषों का संशोधन किया जा रहा है |

प्रिज्म से प्रकाश का अपवर्तन-


प्रिज्म से प्रकाश का अपवर्तन : 
प्रकाश का अपवर्तन (Refraction of Light): जब कोई प्रकाश की किरण एक माध्यम से दुसरे माध्यम में प्रवेश करती है तो यह अपने मार्ग से विचलित हो जाती है इसे ही प्रकाश का अपवर्तन कहते है |
प्रिज्म (Prizm): यह एक तिकोना काँच का स्लैब होता है जिसके दो त्रिभुजाकार आधार तथा तीन आयताकार पार्श्व पृष्ठ होते हैं | ये पृष्ठ एक दुसरे पर झुके होते हैं |

                     प्रिज्म 
प्रिज्म कोण (Angle of Prizm): इसके दो पार्श्व फलकों के बीच के कोण को प्रिज्म कोण कहते हैं |

            काँच के त्रिभुजाकार प्रिज्म से प्रकाश का अपवर्तन 
PE - आपतित किरण
EF - अपवर्तित किरण
FS - निर्गत किरण
∠A, ∠B, ∠C - प्रिज्म कोण
∠D - विचलन कोण
∠i - आपतन कोण
∠r - अपवर्तन कोण
∠e - निर्गत कोण
प्रिज्म द्वारा प्रकाश का अपवर्तन : यहाँ PE आपतित किरण है, EF अपवर्तित किरण है तथा FS निर्गत किरण है। आप देख सकते हैं कि पहले पृष्ठ AB पर प्रकाश की किरण वायु से काँच में प्रवेश कर रही है। अपवर्तन वेफ पश्चात प्रकाश की किरण अभिलंब की ओर मुड़ जाती है। दूसरे पृष्ठ AC पर, प्रकाश की किरण काँच से वायु में प्रवेश करती है, तो प्रकाश कि किरण अभिलंब से दूर भागती है | 
  • प्रिज्म भी काँच के घनाकार स्लैब की तरफ अपवर्तन के सभी नियमों का पालन करता है | 

स्पेक्ट्रम : जब सूर्य का श्वेत प्रकाश किसी प्रिज्म से होकर गुजरता है तो विभिन्न वर्णक्रमों में विभाजित हो जाता है | प्रकाश के अवयवी वर्णों के इस बैंड को स्पेक्ट्रम कहते हैं |
इस वर्णक्रम को VIBGYOR से दर्शाया जाता है ताकि इनका क्रम याद रखने में सहायक हो |
बैगनी (violet)जमुनी (Indigo)नीला (blue)हरा (green)पीला (yellow)नारंगी (orange) तथा लाल (red) |
विक्षेपण : प्रकाश के अवयवी वर्णों में विभाजन को विक्षेपण कहते हैं |
श्वेत प्रकाश: कोई भी प्रकाश जो सूर्य के प्रकाश के सदृश स्पेक्ट्रम बनाता है, प्रायः
श्वेत प्रकाश कहलाता है।
स्पेक्ट्रम प्राप्त करने के लिए सर आइजक न्यूटन का प्रयोग :

आइजक न्यूटन ने सर्वप्रथम सूर्य का स्पेक्ट्रम प्राप्त करने के लिए काँच के प्रिज़्म का उपयोग किया। एक दूसरा समान प्रिज़्म उपयोग करके उन्होंने श्वेत प्रकाश के स्पेक्ट्रम के वर्णों को और अधिक विभक्त करने का प्रयत्न किया। किन्तु उन्हें और अधिक वर्ण नहीं मिल पाए। फिर एक दूसरा सर्व सम प्रिज़्म पहले प्रिज्म के सापेक्ष उलटी स्थिति में रखा। इससे स्पेक्ट्रम के सभी वर्ण दूसरे प्रिज़्म से होकर गुशरे। उन्होंने देखा कि दूसरे प्रिश्म से श्वेत प्रकाश का किरण पुंज निर्गत हो रहा है। इस प्रेक्षण से न्यूटन को यह विचार आया कि सूर्य का प्रकाश सात वर्णों से मिलकर बना है।
  • न्यूटन के इस प्रयोग के आधार पर हम कह सकते है कि सूर्य का प्रकाश सात वर्णों से मिलकर बना है |
  • श्वेत प्रकाश प्रिश्म द्वारा इसके सात अवयवी वर्णों में विक्षेपित हो जाता है। 
  • किसी प्रिश्म से गुशरने के पश्चात, प्रकाश के विभिन्न वर्ण, आपतित किरण के सापेक्ष अलग-अलग कोणों पर झुकते (मुड़ते) हैं।
  • लाल प्रकाश सबसे कम झुकता है जबकि बैंगनी सबसे अधिक झुकता है।
  • आइजक न्यूटन ने सर्वप्रथम सूर्य का स्पेक्ट्रम प्राप्त करने के लिए काँच के प्रिज़्म
    का उपयोग किया।
  • एक दूसरा समान प्रिज़्म उपयोग करके उन्होंने श्वेत प्रकाश के स्पेक्ट्रम के वर्णों को और अधिक विभक्त करने का प्रयत्न किया।

प्राकृतिक परिघटनाएं एवं वायुमंडलीय अपवर्तन-



प्राकृतिक परिघटनाएं (Natural Phenomenons) : हमारे आसपास बहुत सी घटनाएँ होती रहती हैं , जो कुछ प्राकृतिक कारणों से होती हैं |  ऐसी घटनाओं को प्राकृतिक परिघटनाएं कहा जाता है | जैसे - इन्द्रधनुष का बनाना, आकाश में तारों का टिमटिमाना, आकाश का नीला दिखाई देना, सूर्योदय एवं सूर्यास्त के समय सूर्य का रक्ताभ प्रतीत होना इत्यादि |
पूर्ण आतंरिक परावर्तन (Total Internal Reflection) : पूर्ण आतंरिक परावर्तन एक प्रकाशीय परिघटना है जिसमें प्रकाश की किरण किसी माध्यम के तल से ऐसे कोण से आपतित होती है कि अपवर्तन के बाद उसका परावर्तन उसी माध्यम में हो जाता है जिस माध्यम से वह आई होती है | इसे ही पूर्ण आतंरिक परावर्तन कहते हैं |

क्रांतिक कोण (Critical Angle) : वह आपतन कोण जिसका अपवर्तन कोण का मान 90o या उससे अधिक हो | क्रांतिक कोण कहलाता है |
किसी माध्यम में पूर्ण आतंरिक परावर्तन होने कि शर्त : 
(i) प्रकाश कि किरण अधिक अपवर्तनांक से कम अपवर्तनांक के माध्यम की ओर प्रवेश करे अर्थात सघन माध्यम से विरल माध्यम की ओर प्रवेश करे |
(ii) आपतन कोण का मान क्रांतिक कोण से अधिक हो |
वायुमंडलीय अपवर्तन (Atmospheric Refraction): हमारे वायुमंडल में वायु की समान्यत: दो परतें हैं एक गर्म वायु की तथा दूसरी ठंठी वायु की, जो मिलकर दो भिन्न-भिन्न अपवर्तनांकों की माध्यम बनाती है | गर्म वायु हल्की होती है जो ऊपर उठ जाती है और ठंठ वायु जो थोड़ी भारी होती है वह पृथ्वी कि सतह की ओर रहती है | ठंठ वायु सघन माध्यम का कार्य करता है और गर्म वायु बिरल माध्यम का कार्य करता है | इससे होकर गुजरने वाली प्रकाश की किरण में अपवर्तन होता है इसे ही वायुमंडलीय अपवर्तन कहते हैं |
  • पृथ्वी के वायुमंडल के कारण होने वाले प्रकाश के अपवर्तन को वायुमंडलीय अपवर्तन कहते हैं | 
  • गरम वायु में से होकर देखने पर वस्तु की आभासी स्थिति परिवर्तित होती रहती है।
  • वायुमंडलीय अपवर्तन के कारण बहुत सी परिघटनाएं होती रहती है जैसे- तारों, का टिमटिमाना, अग्रिम सूर्योदय में सूर्य की आभासी स्थित दिखाई देना इत्यादि | 
  • ऊपर से जैसे-जैसे हम पृथ्वी की सतह की ओर बढ़ते जाते है वायु का अपवर्तनांक बढ़ता जाता है | 
वायुमंडलीय अपवर्तन का कारण: पृथ्वी के वायुमंडल के कारण होने वाले प्रकाश का अपवर्तन |
तारों का टिमटिमाना (Twinkling of stars) :  तारों के प्रकाश के वायुमंडलीय अपवर्तन के कारण ही तारे टिमटिमाते प्रतीत होते हैं। पृथ्वी के वायुमंडल में प्रवेश करने के पश्चात पृथ्वी के पृष्ठ पर पहुँचने तक तारे का प्रकाश निरंतर अपवर्तित होता जाता है। वायुमंडलीय अपवर्तन उसी माध्यम में होता है जिसका क्रमिक परिवर्ती अपवर्तनांक हो। क्योंकि वायुमंडल तारे के प्रकाश को अभिलंब की ओर झुका देता है, अतः तारे की आभासी स्थिति उसकी वास्तविक स्थिति से कुछ भिन्न प्रतीत होती है। अतः तारे की आभासी स्थिति विचलित होती रहती है तथा आँखों में प्रवेश करने वाले तारों के प्रकाश की मात्रा झिलमिलाती रहती है  -जिसके कारण कोई तारा कभी चमकीला प्रतीत होता है तो कभी धुँधला, जो कि टिमटिमाहट का प्रभाव है।
ग्रहों का टिमटिमाते हुए नहीं दिखाई देना : ग्रह तारों की अपेक्षा पृथ्वी के बहुत पास हैं और इसीलिए उन्हें विस्तृत स्रोत की भाँति माना जा सकता है। यदि हम ग्रह को बिंदु-साइश के अनेक प्रकाश स्रोतों का संग्रह मान लें तो सभी बिंदु साइश के प्रकाश-स्रोतों से हमारे नेत्रों में
प्रवेश करने वाले प्रकाश की मात्रा में कुल परिवर्तन का औसत मान शून्य होगा, यही कारण है कि ग्रह टिमटिमाते हुए दिखाई नहीं देते हैं |
सुर्योदय होने के पहले एवं सुयास्त होने बाद भी सूर्य का दिखाई देना : 
पृथ्वी के उपर वायुमंडल में जैसे - जैसे हम ऊपर जाते हैं, वायु हल्की होती जाती हैं । सुर्योदय होने के पहले एवं सुर्यास्त होने बाद सूर्य से चलने वाली किरणें पूर्ण आंतरिक परावर्तित  होकर हमारी आँख तक पहुँच जाती हैं । जब हम इन किरणों को सीधा देखते हैं तो हमें सूर्य की अभासी प्रतिबिम्ब क्षैतिज से उपर दिखाई देता है जबकि सूर्य उस समय वास्तव में क्षितिज से नीचे होता है |
वास्तविक सूर्योदय : वास्तविक सूर्योदय का अर्थ है सूर्य का वास्तव में क्षितिज को पार करना |
सूर्य की आभासी स्थिति : इस स्थिति में सूर्य अपने वास्तविक स्थान से थोडा उठा हुआ नजर आता है | जो वास्तव में सूर्य की स्थिति नहीं होती है | इसे ही सूर्य कि आभासी स्थित कहते हैं |
यह घटना भी ठीक उसी तरह होता है जब हम किसी शीशे की गिलास में पानी डालकर एक सिक्के को देखते है तो वह सिक्का अपने वस्तविक स्थान से थोडा उठा हुआ नजर आता है |
इन्द्रधनुष का बनना : वर्षा होने के पश्चात् ही हमें इन्द्रधनुष दिखाई देता है | इन्द्रधनुष आकाश में जल की सूक्ष्म बूंदों में दिखाई देने वाला स्पेक्ट्रम है | जब जल की किसी बूंद से होकर सूर्य का प्रकाश गुजरता है तो प्रकाश का परिक्षेपण होने के कारण इन्द्र धनुष बनता है | जिसमें सूर्य के आपतित प्रकाश को ये बूँदें अपवर्तित तथा विक्षेपित करती हैं, तत्पश्चात इसे आंतरिक परावर्तित करती हैं, अंततः जल की बूँद से बाहर निकलते समय प्रकाश को पुनः अपवर्तित करती हैं | तो इस स्थिति में जल की वह बूंद प्रिज्म की भांति कार्य करता है और परिमाण स्वरुप सूर्य की विपरीत दिशा में इन्द्रधनुष बनता है |
  • जल की बुँदे प्रिज्म की भांति कार्य करती हैं | 
  • वर्षा होने के पश्चात् ही हमें इन्द्रधनुष दिखाई देता है | 
  • इन्द्रधनुष आकाश में जल की सूक्ष्म बूंदों में दिखाई देने वाला स्पेक्ट्रम है |
  • यह हमेशा सूर्य की विपरीत दिशा में बनता है | 
  • यह प्रकाश के परिक्षेपण के कारण होता है | 

प्रकाश का प्रकीर्णन-


प्रकाश का प्रकीर्णन :
प्रकाश जिस मार्ग से होकर गुजरता है यदि उस माध्यम में कोलाइडल विलयन के कण हो तो वे कण प्रकाश को प्रकीर्णित (फैलाना) कर देते है | इसे ही प्रकाश का प्रकीर्णन कहते है |
प्रकाश के प्रकीर्णन से होने वाली परिघटनाओं का उदाहरण : प्रकाश के प्रकीर्णन से होने वाली बहुत सी परिघटनाएं होती रहती हैं जो हमें देखने को मिलती हैं | जैसे -
आकाश का नीला रंग, गहरे समुद्र के जल का रंग, सूर्योदय तथा सूर्यास्त के समय सूर्य का रक्ताभ दिखाई देना आदि |
टिंडल प्रभाव (Tyndal Effect) : जब कोई प्रकाश किरण पुंज ऐसे महीन कणों से टकराता है तो उस किरण पुंज का मार्ग दिखाई देने लगता है। इन कणों से विसरित प्रकाश परावर्तित होकर हमारे पास तक पहुँचता है। कोलॉइडी कणों द्वारा प्रकाश के प्रकीर्णन की परिघटना को टिंडल प्रभाव कहते हैं |
संक्षेप में, कोलाइडली कणों द्वारा गुजरने वाले प्रकाश के मार्ग को कोलाइडल के कण दृश्य बना देते है, प्रकाश के मार्ग को फैलने की इस परिघटना को टिंडल प्रभाव कहते हैं |
टिंडल प्रभाव के उदाहरण : 
1. जब धुंएँ से भरे किसी कमरे में किसी सूक्ष्म छिद्र से कोई पतला प्रकाश किरण पुंज प्रवेश करता है तो इस परिघटना को देखा जा सकता है।
2. जब किसी घने जंगल के वितान (canopy) से सूर्य का प्रकाश गुजरता है तो टिंडल प्रभाव को देखा जा सकता है।
3. जंगल के कुहासे में जल की सूक्ष्म बूँदें प्रकाश का प्रकीर्णन कर देती हैं।
ये सभी घटनाएँ कोलाइडल विलयन की उपस्थिति के कारण हमें टिंडल प्रभाव दिखाई देता है | कोलाइडल विलयन के उदाहरण हैं |
वायु, धूम, कोहरा, दूध, धुँआ, जेली, क्रीम इत्यादि |
कोलाइडल विलयन के कण वास्तविक विलयन से बड़े होते है जो देखे जा सकते हैं | जबकि वास्तविक विलयन के कण एक समान होने के कारण इन्हें अलग-अलग पहचाना नहीं जा सकता है, यही कारण है कि टिंडल प्रभाव के दौरान कोलाइडल विलयन के कण दिखाई देते हैं |
बिना कण के प्रकाश का प्रकीर्णन नहीं होता है, अर्थात जहाँ ये कण मौजूद नहीं है वहाँ प्रकीर्णन नहीं होता है जैसे निर्वात, जिसका उदाहरण है अंतरिक्ष में प्रकाश का प्रकीर्णन नहीं होता है | यही कारण है कि अन्तरिक्ष यात्रियों को आकाश काला दिखाई देता है क्योकि वहाँ प्रकाश प्रकीर्णित नहीं होता है | 
  • किसी वास्तविक विलयन से गुशरने वाले प्रकाश किरण पुंज का मार्ग हमें दिखाई नहीं देता। तथापि, किसी कोलॉइडी विलयन में जहाँ कणों का साइज़ अपेक्षाकृत बड़ा होता है, यह मार्ग दृश्य होता है।
प्रकीर्णित प्रकाश का रंग को प्रभावित करने वाला कारक :
1. प्रकीर्णित प्रकाश का वर्ण, प्रकीर्णन करने वाले कणों के साइज़ पर निर्भर करता है।
प्रकाश के वर्णों का तरंगदैर्ध्य : 
इसके लिए प्रकाश के विभिन्न वर्णों पर विचार करना होगा, प्रिज्म द्वारा बने प्रकाश के विभिन्न अव्यवी वर्णों के विषय में हम जान चुके है | हमने वहाँ देखा कि जिस वर्ण का तरंगदैर्ध्य सबसे अधिक है वह कम झुकता है और जिसका सबसे कम है वह वर्ण सबसे अधिक के कोण पर झुकता है | लाल रंग सबसे कम झुकता है अर्थात लाल रंग की तरंगदैर्ध्य सबसे अधिक होता है,  श्वेत प्रकाश को छोड़कर | नीला प्रकाश का तरंगदैर्ध्य कम होता है इसलिए यह लाल, पीला, हरा आदि की तुलना में अधिक झुकता है |
कौन-सा रंग अधिक प्रकीर्णित होता है और कौन-सा रंग कम : 
अत्यंत सूक्ष्म कण मुख्य रूप से नीले प्रकाश को प्रकीर्ण करते हैं जबकि बड़े साइज़ के कण अधिक तंरगदैर्घ्य के प्रकाश को प्रकीर्ण करते हैं। यदि प्रकीर्णन करने वाले कणों का साइज़ बहुत अधिक है तो प्रकीर्णित प्रकाश श्वेत भी प्रतीत हो सकता है।
यहाँ हम देखते है छोटे कण कम तरंगदैर्ध्य के रंग को प्रकीर्णित करता है और जैसे-जैसे कणों का आकार बढ़ता जाता है ये कण अधिक तरंगदैर्ध्य के रंग को प्रकीर्णित करता है | श्वेत प्रकार का तरंगदैर्ध्य  लाल रंग से भी अधिक होता है |
प्रकाश के प्रकीर्णन से होने वाली परिघटनाएं : 
1. स्वच्छ आकाश का नीला दिखाई देना : 
जब सूर्य का प्रकाश वायुमंडल से गुजरता है, वायु के सूक्ष्म कण लाल रंग की अपेक्षा नीले रंग (छोटी तरंगदैर्घ्य) को अधिक प्रबलता से प्रकीर्ण करते हैं। प्रकीर्णित हुआ नीला प्रकाश हमारे नेत्रों में प्रवेश करता है। तो हमें आकाश नीला दिखाई देता है |
2. अंतरिक्ष यात्रियों को आकाश काला दिखाई देना :
जहाँ वायुमंडल नहीं है वहाँ कण नहीं जहाँ कण नहीं वहाँ प्रकाश का प्रकीर्णन नहीं | यदि हमारी पृथ्वी पर वायुमंडल न होता तो कोई प्रकीर्णन न हो पाता | तब पृथ्वी से भी आकाश काला ही प्रतीत होता है | अत्याधिक ऊँचाई पर वायुमंडल नहीं होने के कारण प्रकाश का प्रकीर्णन नहीं हो पाता है जहाँ प्रकीर्णन नहीं होता है वहाँ प्रकाश का मार्ग दिखाई नहीं देता, काला दिखाई देता है | यही कारण है कि अंतरिक्ष यात्रियों को आकाश काला दिखाई देता है |
3. गहरे समुद्र का जल का रंग नीला दिखाई देना : 
जब सूर्य का प्रकाश समुद्र के तल पर पड़ता है तो समुद्र का जल नीले रंग की अपेक्षा लाल, पीला संतरी आदि रंगों को अधिक तेजी से सोंखता है और अधिकांश नीले रंग वापस आ जाता है अर्थात नीले रंग का प्रकीर्णन हो जाता है | यही कारण है कि समुद्र का जल नीला दिखाई देता है |
4. सूर्योदय तथा सूर्यास्त के समय सूर्य का रक्ताभ दिखाई देना : 
क्षितिज के समीप स्थित सूर्य से आने वाला प्रकाश हमारे नेत्रों तक पहुँचने से पहले पृथ्वी के वायुमंडल में वायु की मोटी परतों से होकर गुजरता है | जब सूर्य सिर से ठीक ऊपर हो तो सूर्य से आने वाला प्रकाश बहुत कम दुरी तय करता है, यह तब होता है जब सूर्य क्षितिज पर हो | क्षितिज के समीप नीले तथा कम तरंगदैर्घ्य के प्रकाश का अधिकांश भाग कणों द्वारा प्रकीर्ण हो जाता है। इसीलिए, हमारे नेत्रों तक पहुँचने वाला प्रकाश अधिक तरंगदैर्घ्य का होता है अर्थात लाल रंग का होता है | यही कारण है कि सूर्योदय या सूर्यास्त के समय सूर्य रक्ताभ प्रतीत होता है।
खतरे के सिग्नल में लाल रंग का उपयोग : लाल रंग तरंगदैर्ध्य अन्य रंगों की तुलना में अधिक होता है | लाल रंग का तरंगदैर्ध्य नीले रंग की अपेक्षा लगभग 1.8 गुना अधिक होता है | लाल रंग कुहरे या धुंएँ से सबसे कम प्रकीर्ण होता है और तरंगदैर्ध्य अधिक होने के कारण इस रंग का प्रकाश अधिक दूर तक जाता है | यह दूर से देखने पर भी लाल रंग का ही दिखाई देता है | 
नोट: जिन वर्णों का प्रकीर्ण हो जाता है वह वर्ण दिखाई नहीं देता है और जिस वर्ण का प्रकीर्णन नहीं होता है वह बना रहता है और दिखाई देता है | 

10. प्रकाश-परावर्तन एवं अपवर्तन


10. प्रकाश-परावर्तन एवं अपवर्तन


परावर्तन का नियम-


प्रकाश वस्तुओं को दृश्य बनाता है | सूर्य का प्रकाश दिन के समय वस्तुओं के देखने में मदद करता है |
हम किसी वस्तु को कैसे देख पाते है ?
वस्तु पर पड़ने वाले प्रकाश को वस्तु परावर्तित कर देती है, यह परावर्तित किरण जब हमारी आँखों के द्वारा ग्रहण किया जाता है तो यह परावर्तन वस्तु को आँखों के द्वारा देखने योग्य बनाता है |
प्रकाश की किरण : जब प्रकाश अपने प्रकाश के स्रोत से गमन करता है तो यह सीधी एवं एक सरल रेखा होता है | प्रकाश के स्रोत से चलने वाले इस रेखा को प्रकाश की किरण कहते है |
छाया: जब प्रकाश किसी अपारदर्शी वस्तु से होकर गुजरता है तो यह प्रकाश की किरण को परावर्तित कर देता है जिससे उस अपारदर्शी वस्तु की छाया बनती है |
प्रकाश का विवर्तन : यदि प्रकाश के रास्ते में राखी अपारदर्शी वस्तु अत्यंत सूक्ष्म हो तो प्रकाश सरल रेखा में चलने की अपेक्षा इसके किनारों पर मुड़ने की प्रवृति दिखता है - इस प्रभाव को प्रकाश का विवर्तन कहते है |
प्रकाश का परावर्तन :
जब प्रकाश की किरण किसी चमकीले सतह से या परावर्तक पृष्ठ से टकराता है तो यह उसी माध्यम में पुन: मुड़ जाता है जिस माध्यम से यह आता है | इस परिघटना को प्रकाश का परावर्तन कहते है |

प्रकाश का परावर्तन हमेशा अपारदर्शी वस्तुओं से ही होता है | जबकि प्रकाश का अपवर्तन पारदर्शी वस्तुओं से होता है |
प्रकाश के परावर्तन का नियम :
(i)  आपतन कोण, परावर्तन कोण  के समान होता है |
    ∠ i =   ∠ r
(ii)  आपतित किरण, दर्पण के आपतन बिंदु पर अभिलम्ब और परावर्तित किरण, सभी एक ही तल में होते हैं |
नोट : परावर्तन का यह नियम गोलीय दर्पण सहित सभी परावर्तक पृष्ठों पर लागु होता है |
कुछ समान्य एवं अदभुत परिघटनाएं: 
प्रकाश के परावर्तन के कारण कुछ समान्य एवं अदभुत परिघटनाएं होती है जो निम्न है :
दर्पण के द्वारा प्रतिबिम्ब का बनना, तारों का टिमटिमाना, इन्द्रधनुष के सुन्दर रंग, किसी माध्यम द्वारा प्रकाश का मोड़ना आदि |
परावर्तन के प्रकार:
(i) नियमित परावर्तन (specular or regular reflection): इस प्रकार का परावर्तन चिकने सतह से होता है तथा अपतित किरणें परावर्तन के पश्चात् समांतर ही रहती है |
                                 
(ii) अनियमित परावर्तन (Diffused or irregular reflection): इस तरह का परावर्तन खुरदरे सतह से होता है तथा परावर्तन के पश्चात् आपतित समान्तर किरणे समान्तर नहीं होती है |
                              
(i) नियमित परावर्तन (specular or regular reflection) :
(ii) विसरित परावर्तन (Diffused or irregular reflection) :
दर्पण : यह एक चमकीला और अधिक पॉलिश किया हुआ परावर्तक पृष्ठ होता है जो अपने सामने रखी वस्तु का प्रतिबिम्ब बनाता है |
दर्पण दो प्रकार का होता है |
(A)  समतल दर्पण (Plane mirror) : इसका परावर्तक पृष्ठ सीधा तथा सपाट होता है |
परिभाषा : ऐसे दर्पण जिनका परावर्तक पृष्ठ समतल हो समतल दर्पण कहलाता है |
                          
(B)  गोलीय दर्पण (Spherical mirror) : इसका परावर्तक पृष्ठ वक्र (मुड़ा हुआ) होता है | गोलीय दर्पण का परावर्तक पृष्ठ अन्दर की ओर या बाहर की ओर वक्रित हो सकता है |
परिभाषा : ऐसे दर्पण जिसका परावर्तक पृष्ठ गोलीय होता है, गोलीय दर्पण कहलाता है |
इसी वक्रता के आधार पर गोलीय दर्पण दो प्रकार का होता है |
गोलीय दर्पण के प्रकार :
(i) अवतल दर्पण (Concave mirror) : इसका परावर्तक पृष्ठ अन्दर की ओर अर्थात गोले के केंद्र की ओर धसा हुआ (वक्रित)  होता है |
                      
(ii) उत्तल दर्पण (convex mirror) : इसका परावर्तक पृष्ठ बाहर की तरफ उभरा हुआ (वक्रित) होता है |
                    
गोलीय दर्पण के भाग: 
(i) ध्रुव (Pole): गोलीय दर्पण के परावर्तक पृष्ठ के केंद्र को दर्पण का ध्रुव कहते है | इसे P से इंगित किया जाता है |
(ii)  वक्रता केंद्र (Center of Curvature): गोलीय दर्पण का परावर्तक पृष्ठ एक गोले का भाग होता है | इस गोले का केंद्र को गोलीय दर्पण का वक्रता केंद्र कहते है | इसे अंग्रेजी के बड़े अक्षर C से इंगित किया जाता है |
(iii) वक्रता त्रिज्या (The radius of Curvature): गोलीय दर्पण के ध्रुव एवं वक्रता केंद्र के बीच की दुरी को वक्रता त्रिज्या कहते है |
(iv) मुख्य अक्ष (Principal axis): गोलीय दर्पण के ध्रुव एवं वक्रता केंद्र से होकर गुजरने वाली एक सीधी रेखा को दर्पण का मुख्य अक्ष कहते है |
(v) मुख्य फोकस (Principal Focus): दर्पण के ध्रुव एवं वक्रता केंद्र के बीच एक अन्य बिंदु F होता है जिसे मुख्य फोकस कहते है | मुख्य अक्ष के समांतर आपतित किरणें परावर्तन के बाद अवतल दर्पण में इसी मुख्य फोकस पर प्रतिच्छेद करती है तथा उत्तल दर्पण में प्रतिच्छेद करती प्रतीत होती है |
(vi) फोकस दुरी (Focal Length): दर्पण के ध्रुव एवं मुख्य फोकस के बीच की दुरी को फोकस दुरी कहते है, इसे अंग्रेजी के छोटे अक्षर () से इंगित किया जाता है | यह दुरी वक्रता त्रिज्या की आधी होती है |
(vii) द्वारक (Aperatute): गोलीय दर्पण का परावर्तक पृष्ठ अधिकांशत: गोलीय ही होता है | इस पृष्ठ की एक वृत्ताकार सीमा रेखा होती है | गोलीय दर्पण के परावर्तक पृष्ठ की इस सीमा रेखा का व्यास, दर्पण का द्वारक कहलाता है |
प्रतिबिम्ब की स्थिति, प्रकृति एवं आकार 
बिम्ब की स्थिति : वह स्थान जहाँ वस्तु रखी गई है |
प्रतिबिम्ब की स्थिति : वह स्थान जहाँ दर्पण द्वारा प्रतिबिम्ब बना है |
प्रतिबिम्ब की साइज़ : यह प्रतिबिम्ब का आकार है जो यह बताता है कि वस्तु का प्रतिबिम्ब वस्तु से छोटा बना है, बराबर बना है या वस्तु से बड़ा बना है |
प्रतिबिम्ब की प्रकृति : प्रतिबिम्ब की प्रकृति से यह ज्ञात होता है कि दी गई वस्तु का दर्पण द्वरा बनाया गया प्रतिबिम्ब कैसा है - आभासी या वास्तविक और सीधा या उल्टा |
प्रतिबिम्ब की प्रकृति दो प्रकार का होता है |
(i)  वास्तविक और उल्टा : यह प्रतिबिम्ब सदैव दर्पण के सामने एवं उल्टा बनता है |
(ii)  आभासी और सीधा : यह प्रतिबिम्ब सदैव दर्पण के परदे के पीछे एवं सीधा बनता है |
अवतल दर्पण द्वारा बनने वाला प्रतिबिम्ब : 
अवतल दर्पण में बनने वाली प्रतिबिम्ब वस्तु की स्थिति पर निर्भर करती है | ध्रुव (P) तथा मुख्य फोकस (F) के बीच रखा बिम्ब का ही केवल प्रतिबिम्ब आभासी एवं सीधा बनता है अन्यथा अवतल दर्पण अन्य किसी भी जगह रखी वस्तु का प्रतिबिम्ब वास्तविक एवं उल्टा बनाता है |
  • अनंत (infinity) पर रखी वस्तु की प्रतिबिम्ब फोकस F पर वास्तविक एवं उल्टा तथा अत्यधिक छोटा अर्थात बिंदु साइज़ का बनता है |
  • वक्रता केंद्र C पर रखी वस्तु की प्रतिबिम्ब फोकस F तथा वक्रता केंद्र C पर वास्तविक एवं उल्टा तथा छोटा बनता है |
  • वक्रता केंद्र C पर रखी वस्तु की प्रतिबिम्ब वक्रता केंद्र C पर वास्तविक एवं उल्टा तथा समान साइज़ का बनता है |
  • ​वक्रता केंद्र C एवं मुख्य फोकस F के बीच रखी वस्तु की प्रतिबिम्ब C से परे, वास्तविक एवं उल्टा तथा विवर्धित (बड़ा) बनता है |
  • मुख्य फोकस पर रखी वस्तु की प्रतिबिम्ब अनंत (infinity) पर वास्तविक एवं उल्टा एवं अत्यधिक विवर्धित (वस्तु से बहुत बड़ा) बनता है |
  • ध्रुव (P) तथा मुख्य फोकस (F) के बीच रखा बिम्ब का प्रतिबिम्ब दर्पण के पीछे आभासी एवं सीधा और वस्तु से बड़ा बनता है
उत्तल दर्पण द्वारा बनने वाला प्रतिबिम्ब :
अवतल दर्पण के उपयोग :
(i) अवतल दर्पणों का उपयोग सामान्यतः टॉर्च, सर्चलाइट तथा वाहनों के अग्रदीपों (headlights) में प्रकाश का शक्तिशाली समांतर किरण पुंज प्राप्त करने के लिए किया जाता है।
(ii) इन्हें प्रायः चेहरे का बड़ा प्रतिबिंब देखने के लिए शेविंग दर्पणों (shaving mirrors) के रूप में उपयोग करते हैं।
(iii) दंत विशेषज्ञ अवतल दर्पणों का उपयोग मरीजों के दाँतों का बड़ा प्रतिबिंब देखने के लिए करते हैं।
(iv) सौर भट्टियों में सूर्य के प्रकाश को केन्द्रित करने के लिए बड़े अवतल दर्पणों का उपयोग किया जाता है।
उत्तल दर्पण का उपयोग :
(i) उत्तल दर्पणों का उपयोग सामान्यतः वाहनों के पश्च.दृश्य (wing) दर्पणों के रूप में
किया जाता है।
(ii) ये दर्पण वाहन के पार्श्व (side) में लगे होते हैं तथा इनमें ड्राइवर अपने पीछे के वाहनों को देख सकते हैं जिससे वे सुरक्षित रूप से वाहन चला सके।
(iii) इसका उपयोग टेलिस्कोप में भी होता है |
(iv) उत्तल दर्पण का उपयोग स्ट्रीट लाइट रिफ्लेक्टर के रूप में भी किया जाता है क्योंकि यह एक बड़े क्षेत्र पर प्रकाश प्रसार करने में सक्षम हैं |
वाहनों में साइड मिरर के रूप उत्तल दर्पण को प्राथमिकता: 
उत्तल दर्पणों को इसलिए भी प्राथमिकता देते हैं क्योंकि ये सदैव सीध प्रतिबिंब बनाते हैं यद्यपि वह छोटा होता है। इनका दृष्टि.क्षेत्र भी बहुत अधिक है क्योंकि ये बाहर की ओर वक्रित होते हैं। अतः समतल दर्पण की तुलना में उत्तल दर्पण ड्राइवर को अपने पीछे के बहुत बड़े क्षेत्र को देखने में समर्थ बनाते हैं।

गोलीय दर्पण द्वारा बने प्रतिबिम्ब का निरूपण-


  • कम से कम दो परावर्तित किरणों के प्रतिच्छेदन से किसी बिंदु बिंब के प्रतिबिंब की स्थिति ज्ञात की जा सकती है।
  • प्रतिबिंब के स्थान निर्धरण के लिए निम्न में से किन्हीं भी दो किरणों पर विचार किया जा सकता है।
गोलीय दर्पणों द्वारा परावर्तन के लिए चिन्ह परिपाटी (Sign Convention):  
इसे नई चिन्ह परिपाटी भी कहते हैं :
इस चिन्ह परिपाटी के अनुसार : 
(i) दर्पण के ध्रुव (P) को मूल बिंदु मानते है, अर्थात दर्पण की सभी दूरियां मूल बिंदु (P) से ही मापी जाती हैं |
(ii) निदेशांक ज्यामिति पद्धति के अनुसार मुख्य अक्ष को x-अक्ष (XX') लिया जाता है |
(iii) बिंब सदैव दर्पण के बाईं ओर रखा जाता है। इसका अर्थ है कि दर्पण पर बिंब
से प्रकाश बाईं ओर से आपतित होता है।
(iv) मूल बिंदु के दाईं ओर (+ x-अक्ष के अनुदिश) मापी गई सभी दूरियाँ धनात्मक मानी जाती हैं जबकि मूल बिंदु के बाईं ओर (- x-अक्ष के अनुदिश) मापी गई दूरियाँ ऋणात्मक मानी जाती हैं।

दर्पण के सामने के भाग की सभी दूरियाँ ऋणात्मक (-) ली जाती हैं | और दर्पण के पीछे की सभी दूरियाँ धनात्मक (+) ली जाती हैं |
अवतल दर्पण में : वे सभी दूरियाँ जो दर्पण के सामने होती हैं |
(1) वस्तु की दुरी (u) = - u [ऋणात्मक (-) ली जाती हैं |]
(2) फोकस दुरी (f) = - f [ऋणात्मक (-) ली जाती हैं |]
(3) प्रतिबिंब की दुरी (v) = - v [ऋणात्मक (-) ली जाती हैं, यदि प्रतिबिंब वास्तविक तथा उल्टा बनता हो |]
उत्तल दर्पण में : वे सभी दूरियाँ जो दर्पण के सामने होती हैं एवं जो पीछे होती हैं |
 (1) वस्तु की दुरी (u) = - u [ऋणात्मक (-) ली जाती हैं, वैसे वस्तु हमेशा दर्पण के सामने ही रखा जाता है इसलिए u सदैव ऋणात्मक ही होता है |]
(2) फोकस दुरी (f) = f [धनात्मक (+) ली जाती हैं, क्योंकि उत्तल दर्पण की वक्रता पीछे की ओर होता है इसलिए फोकस दुरी भी दर्पण के पीछे होता है |]
(3) प्रतिबिंब की दुरी (v) = v [धनात्मक (+) ली जाती हैं, यदि प्रतिबिंब वास्तविक तथा उल्टा बनता हो तो ऋणात्मक और आभासी एवं सीधा हो तो धनात्मक ली जाती है |]
उत्तल दर्पण ने सदैव आभासी एवं सीधा प्रतिबिम्ब बनता है दर्पण के पीछे बनता है  |
दर्पण सूत्र तथा आवर्धन :
बिंब या वस्तु की दुरी : गोलीय दर्पण में दर्पण के सामने रखी वस्तु तथा इसके ध्रुव के बीच की दूरी को बिंब दूरी (u) कहते है। इसे u से दर्शाते हैं |
प्रतिबिम्ब की दुरी: दर्पण के ध्रुव और बने प्रतिबिंब की बीच की दूरी को प्रतिबिंब दूरी (v) कहते हैं | इसे v से दर्शाते हैं |
फोकस दुरी (f) : दर्पण के ध्रुव और मुख्य फोकस के बीच की दुरी को फोकस दुरी कहते हैं |
दर्पण सूत्र : प्रतिबिंब की दुरी (v) का व्युत्क्रम और बिंब की दुरी (u) का व्युत्क्रम का योग फोकस दुरी (f) के व्युत्क्रम के बराबर होता है |

आवर्धन (Magnification): किसी बिंब का प्रतिबिंब कितना गुना बड़ा है या छोटा है यही प्रतिबिंब का आवर्धन कहलाता है | 


आवर्धन के लिए बिंब की ऊँचाई धनात्मक ली जाती है, क्योंकि बिंब हमेशा मुख्य अक्ष के ऊपर और सीधा रखा जाता है |
आभासी तथा सीधा प्रतिबिंब के लिए प्रतिबिंब की ऊँचाई (h') धनात्मक (+) ली जाती है और वास्तविक और उल्टा प्रतिबिंब के लिए बिंब कि ऊँचाई (h') ऋणात्मक (-) ली जाती है |
आवर्धन का मान : आवर्धन के मान में धनात्मक मान बताता है कि प्रतिबिंब आभासी और सीधा है | ऋणात्मक मान बताता है कि प्रतिबिंब वास्तविक और उल्टा है |

प्रकाश का अपवर्तन-


प्रकाश का अपवर्तन : जब प्रकाश की किरण एक माध्यम से दूसरे माध्यम में जाती हैं तो यह अपने मार्ग से विचलीत हो जाती हैं। प्रकाश के किरण को अपने मार्ग से विचलीत हो जाना प्रकाश का अपवर्तन कहलाता हैं ।
प्रकाश का अपवर्तन सिर्फ पारदर्शी पदार्थों से ही होता है | जैसे शीशा, वायु, जल आदि |
प्रकाश के अपवर्तन का कारण : अपवर्तन प्रकाश के एक पारदर्शी माध्यम से दूसरे में प्रवेश करने पर प्रकाश की चाल में परिवर्तन के कारण होता है।
प्रकाश का अपवर्तन का नियम: 
प्रकाश का अपवर्तन के नियम दो हैं |
1. आपतित किरण, अपवर्तित किरण तथा आपतन बिन्दु पर अभिलंब तीनों एक ही तल में होते हैं ।
2. जब प्रकाश की किरण किन्हीं दो माध्यमों के सीमा तल पर तिरछी आपतित होती हैं तो आपतन कोण (i) की ज्या  (sine) तथा  अपवर्तन कोण की ज्या (sine) का अनुपात एक नियतांक होता हैं ।
स्नेल का अपवर्तन का नियम (Snell's the law of Refraction) : जब प्रकाश की किरण किन्हीं दो माध्यमों के सीमा तल पर तिरछी आपतित होती हैं तो आपतन कोण (i) की ज्या  (sine) तथा  अपवर्तन कोण की ज्या (sine) का अनुपात एक नियतांक होता हैं । इस नियम को स्नेल का अपवर्तन नियम भी कहते  हैं |

अपवर्तन के समय प्रकाश का मार्ग : 
जब प्रकाश की किरण एक माध्यम (विरल) से दूसरे माध्यम (सघन) मे जाती हैं तो यह अभिलंब की ओर मुड जाती हैं । जब यही प्रकाश की किरण सघन से विरल की ओर जाती हैं तो अभिलंब से दूर भागती हैं।

सघन माध्यम (Denser Medium): वह माध्यम जिसका अपवर्तनांक अधिक होता है वह सघन माध्यम कहलाता है | इस माध्यम के कण अधिक घने (dense) होते हैं |
विरल माध्यम (Rarer Medium): वह माध्यम जिसका अपवर्तनांक कम होता है वह विरल माध्यम कहलाता है | इस माध्यम के कणों का घनत्व कम होता है |
  • किसी माध्यम का सघन और विरल होना दो माध्यमों में बीच तुलनात्मक अध्ययन है | यह निर्भर करता है कि कौन सा माध्यम किस माध्यम के सापेक्ष अधिक सघन है और कौन सा विरल है | 

प्रकाश के अपवर्तन से होने वाली परिघतानाएँ: 
1. शीशे के गिलास में रखा पेंसिल या चम्मच मुड़ी हुई नजर आना : जब हम किसी शीशे के गिलास में आधा पानी भरकर उसमें एक पेन्सिल को आंशिक रूप से डुबोते है तो यह मुड़ी हुई नजर आती है |  ऐसा प्रकाश के अपवर्तन के कारण होता है | जल की सतह के अंदर की पेन्सिल जो सीधी होनी चहिये मुड़ी हुई नजर आती है | यहाँ प्रकाश के अपवर्तन का वही नियम लागु होता है कि जब कोई प्रकाश की किरण सघन माध्यम से विरल माध्यम में प्रवेश करती है तो अभिलंब की ओर मुड़ (झुक) जाती है |  
2. शीशे के गिलास में रखा सिक्का उठा हुआ नजर आना : 
ऐसे ही जब हम कोई सिक्का पानी से भरे गिलास में रखते है तो देखते हैं कि सिक्का उठा हुआ नजर आता है ये घटना भी प्रकाश के अपवर्तन के कारण ही होता हैं | अत: यह स्पष्ट हो जाता है कि प्रकाश के अपवर्तन के कारण सिक्का अपनी वास्तविक स्थिति से थोड़ा-सा ऊपर उठा हुआ प्रतीत होता है।
दूसरा उदाहरण है काँच के बर्तन में रखा निम्बू अपने वास्तविक आकार से बड़ा नजर आता है |
  • अलग-अलग द्रव्यों (liquids) में पेन्सिल की अथवा प्रकाश का झुकाव अलग-अलग होता है | 
  • जब प्रकाश एक माध्यम से दूसरे माध्यम में तिरछा होकर जाता है तो दूसरे माध्यम में इसके संचरण की दिशा परिवर्तित हो जाती है।
अपवर्तनांक (Refractive Index) : 
जब प्रकाश की किरण एक माध्यम से दूसरे माध्यम में जाती  हैं तो यह अपने मार्ग से विचलीत हो जाती हैं। ये विचलन माध्यम और उस माध्यम में प्रकाश की चाल पर निर्भर करता हैं । अतः अपवर्तनांक माध्यमों में प्रकाश की चालों का अनुपात होता है।
"जब प्रकाश की किरण किन्हीं दो माध्यमों के सीमा तल पर तिरछी आपतित होती हैं तो आपतन कोण (i) की ज्या  (sine) तथा  अपवर्तन कोण की ज्या (sine) का अनुपात एक नियतांक (स्थिरांक) होता हैं । इसी स्थिरांक के मान को पहले माध्यम के सापेक्ष दुसरे माध्यम का अपवर्तनांक (refractive index) कहते हैं | 
प्रकाश की चाल और अपवर्तनांक : किसी भी माध्यम में प्रकाश की चाल उसके अपवर्तनांक पर निर्भर करता है | माध्यम का ..............................   


गोलीय लेंसों द्वारा अपवर्तन-


लेंस (Lens) : दो पृष्ठों से घिरा हुआ कोई पारदर्शी माध्यम जिसका एक या दोनों पृष्ठ गोलीय है, लेंस कहलाता है |
उत्तल लेंस (Convex Lens) : वह लेंस जिसके दोनों बाहरी गोलीय पृष्ठों का उभार बाहर की ओर हो उसे उत्तल लेंस कहते हैं | इस लेंस को अभिसारी लेंस भी कहते हैं क्योंकि यह अपने से गुजरने वाले प्रकाश किरणों को अभिसरित कर देता है |

                    उत्तल लेंस (Convex Lens) 
अवतल लेंस (Concave Lens) : वह लेंस जिसके दोनों बाहरी गोलीय पृष्ठ अंदर की ओर वक्रित हो उसे अवतल लेंस कहते हैं | इस लेंस को अपसारी लेंस भी कहते हैं क्योंकि यह अपने से गुजरने वाले प्रकाश किरणों को अपसरित कर देता है |

                  अवतल लेंस (Concave Lens) 
वक्रता केंद्र (Centre of curvature) : सभी गोलीय लेंस के प्रत्येक पृष्ठ एक गोले के भाग होते हैं | इन गोलों के केंद्र को लेंस का वक्रता केंद्र कहते है | इसे C1 तथा C2 से दर्शाते हैं |
मुख्य अक्ष (Principle Axis) : मुख्य अक्ष किसी लेंस के दोनों वक्रता केन्द्रों से गुजरने वाली एक काल्पनिक सीधी रेखा लेंस की मुख्य अक्ष कहलाती है।
प्रकाशिक केंद्र (Optic Centre) : लेंस का केन्द्रीय बिंदु इसका प्रकाशिक केंद्र कहलाता है। इसे प्रायः अक्षर O से निरूपित करते हैं।
लेंस के प्रकाशिक केंद्र से गुजरने वाली प्रकाश किरण बिना किसी विचलन के निर्गत होती है।
द्वारक (Aperture) : गोलीय लेंस की वृत्ताकार रूपरेखा का प्रभावी व्यास इसका द्वारक (aperture) कहलाता है।
पतले लेंस : ऐसे लेंस जिनका द्वारक इनकी वक्रता त्रिज्या से बहुत छोटा है। ऐसे लेंस छोटे द्वारक के पतले लेंस कहलाते हैं।
उत्तल लेंस का मुख्य फोकस (Principle Focus) : उत्तल के पर मुख्य अक्ष के समांतर प्रकाश की बहुत सी किरणें आपतित हैं। ये किरणें लेंस से अपवर्तन के पश्चात मुख्य अक्ष पर एक बिंदु पर अभिसरित हो जाती हैं। मुख्य अक्ष पर यह बिंदु लेंस का मुख्य फोकस (Principle Focus) कहलाता है।
अवतल लेंस का मुख्य फोकस (Principle Focus) : अवतल लेंस पर मुख्य अक्ष के समांतर प्रकाश की अनेक किरणें आपतित होती हैं। ये किरणें लेंस से अपवर्तन के पश्चात मुख्य अक्ष के एक बिंदु से अपसरित होती प्रतीत होती हैं। मुख्य अक्ष पर यह बिंदु अवतल लेंस का मुख्य फोकस कहलाता है।
लेंस का फोकस दुरी (Focal Distance) : किसी लेंस के मुख्य फोकस की प्रकाशिक केन्द्र से दूरी फोकस दूरी कहलाती है।
गोलीय लेंसों के लिए चिन्ह-परिपाटी : 
(i) गोलीय लेंसों में सभी दूरियाँ प्रकाशिक केन्द्रों (optic centre) से मापी जाती है |
(ii) उत्तल लेंस की फोकस दुरी धनात्मक (+) होती हैं |
(iii) अवतल लेंस की फोकस दुरी ऋणात्मक (-) होती हैं |
(iv) जिस ओर से प्रकाश लेंस में प्रवेश करता है उस भाग को ऋणात्मक माना जाता है | चाहे वो उत्तल लेंस हो या अवतल लेंस हो | अर्थात जिधर हम बिंब (object) को रखते है वो भाग ऋणात्मक होता है |
(v) लेंस में सभी वास्तविक एवं उल्टा प्रतिबिंब को धनात्मक लेते हैं | और आभासी एवं सीधा प्रतिबिंब को ऋणात्मक लेते है |
(vi) वास्तविक एवं उल्टा प्रतिबिंब लेंस के धनात्मक भाग में बनते हैं और आभासी एवं सीधा प्रतिबिंब लेंस के ऋणात्मक भाग में बनते है |
(vii) बिंब की ऊंचाई (h) सीधा होता है इसलिए इसे धनात्मक (+) लेते हैं | प्रतिबिंब सीधा है तो आभासी और सीधा यदि प्रतिबिंब (h')  उल्टा हो तो वास्तविक और उल्टा इसे ऋणात्मक (-) लेते है | 
लेंस में आवर्धन (Magnification in Lens) : 

लेंस की क्षमता-



लेंस की क्षमता : किसी लेंस द्वारा प्रकाश किरणों को अभिसरण और अपसरण करने की मात्रा (degree) को लेंस की क्षमता कहते हैं | यह उस लेंस के फोकस दुरी के व्युत्क्रम के बराबर होता है | इसे P द्वारा व्यक्त किया जाता है और इसका S.I मात्रक डाइऑप्टर (D) होता है |

1 डाइऑप्टर (D) = 1 m या 100 cm के बराबर होता है |
यदि फोकस दुरी (f) को मीटर में व्यक्त करें तो क्षमता जो 'डाइऑप्टर' (Dioptre) में व्यक्त किया जाता है |
उत्तल लेंस की क्षमता धनात्मक (+) होती है |
अवतल लेंस की क्षमता ऋणात्मक (-) होती है |
उदाहरण : मान लीजिये कि एक लेंस की क्षमता + 2 D है | इसका अर्थ यह है कि वह उत्तल लेंस है और उसकी फोकस दुरी (f) + 0.50 m है अर्थात + 50 सेमी है |
और यदि एक अन्य लेंस की क्षमता -2 D है तो वह अवतल लेंस है और उसकी फोकस दुरी (f) - 0.50 m है अर्थात - 50 सेमी है |
लेंस की क्षमता से प्रश्न: 
उदाहरण 1. एक अवतल लेंस जिसकी फोकस दुरी 25 cm है इसकी क्षमता ज्ञात कीजिये | 
हल : फोकस दुरी (f) = - 25 cm = - 0.25 m (अवतल लेंस की क्षमता ऋणात्मक होती है |)

            = 1/0.25
            = 4 D
उदाहरण 2. एक उत्तल लेंस जिसकी फोकस दुरी 40 सेमी है इस लेंस की क्षमता ज्ञात कीजिये |
हल :  फोकस दुरी (f) = 40 cm = 0.4 m

            = 1/0.4
            = 10/4
            = 2.5 D